
Bachelor thesis
Computing Science

Radboud University

Fuzzing Wi-Fi in IoT devices

Author:
Bart Pleiter
S4752740

First supervisor/assessor:
Dr. Ir. Erik Poll

e.poll@cs.ru.nl

Second assessor:
Dr. Peter Schwabe

p.schwabe@cs.ru.nl

January 16, 2020

Abstract

The growing Internet of Things is bringing more connected devices to con-
sumers every day. These devices, like smart thermostats and smart speakers,
are designed to make life easier. Usually, these devices are connected to the
internet or your smartphone in some way. For this reason, security of these
devices is very important.

This thesis investigates the security of the interface protocol implemen-
tation of IoT devices using black box fuzzing. With fuzzing, we send many
different inputs that are most of the time slightly out of spec, to the device
in an automated way to see if the parser of those inputs is robust enough to
handle those inputs. We chose to fuzz Wi-Fi, because it is relatively easy to
fuzz and does not require special hardware.

Surprisingly, there are only a few articles published regarding Wi-Fi
fuzzing and these are over ten years old. These articles describe that a
common problem with fuzzing certain frames (messages) is the small time
frame for sending back an acknowledgment, for example the frames used for
authentication and association. However, the setup described in this thesis
offers a solution to this problem, which allows fuzzing of all types of frames,
including the frames used to authenticate and associate.

We built our fuzzer in C using Libpcap. While this is more complex
than using Scapy with Python, it is about ten times faster than Scapy and
allows us to verify if our sent frames are received by the system under test
(SUT).

While fuzzing, it is important that the sent Wi-Fi frames are being parsed
by the SUT. Therefore, we made the decision to only fuzz the types of frames
that the SUT expects. For example, we will only fuzz Probe response frames
when the SUT sends Probe requests frames. This approach increased our
success rate, since it allowed us to crash a Nintendo DSI XL when it scans
for Wi-Fi networks.

Our fuzzer fuzzed the scanning, authentication and association process
of several IoT devices and non-IoT devices. Most of the tested devices did
not show any problems or anomalies when fuzzed. Only the Nintendo DSI
XL that we mentioned before did crash when specific Probe response frames
were sent, and a Wi-Fi smart plug showed strange behavior when certain
Association response frames were sent.

Contents

1 Introduction 4
1.1 Recurring problems . 5

2 Background 6
2.1 Definition of IoT . 6
2.2 Fuzz testing . 6
2.3 Choosing an interface . 7
2.4 Wi-Fi or 802.11? . 8

3 The IEEE 802.11 protocol 9
3.1 Networks and Operation modes 9
3.2 Frame types and format . 10
3.3 connection states . 11

3.3.1 Fuzzing in which connection state? 13
3.4 Interesting frames to fuzz . 13
3.5 Acknowledgment frames . 15
3.6 Scanning . 15

3.6.1 Beacon and Probe response frames 16
3.7 Authentication and Association 17

4 Related Work 19

5 Selecting devices to fuzz 21
5.1 Requirements . 21
5.2 Potential devices to fuzz . 21

5.2.1 Google Chromecast . 22
5.2.2 Google Chromecast Audio 22
5.2.3 Raspberry Pi 3 . 22
5.2.4 Orange Pi Zero . 23
5.2.5 Unfit devices . 23
5.2.6 New devices . 23
5.2.7 Final selection of IoT test devices 24
5.2.8 More test devices . 25

1

6 Fuzzer 26
6.1 Structure . 26
6.2 Wi-Fi Controller . 27

6.2.1 Scapy . 27
6.2.2 libpcap . 28

6.3 Fuzz Controller . 28
6.3.1 Authentication and Association Beacon frames 29
6.3.2 Fuzzed frames . 29

6.4 Monitor . 30
6.4.1 Acknowledgment of receipt 30
6.4.2 Crash monitoring . 30

6.5 Writing the fuzzer in C . 31

7 Results 32
7.1 Nintendo DSI XL ERP element crash 32

7.1.1 Conclusions . 33
7.2 Probe response fuzzing results 34

7.2.1 Probe response fuzzing results discussion 35
7.2.2 Problems with Probe response fuzzing 35

7.3 Authentication and Association response fuzzing results . . . 35
7.3.1 Authentication and Association response fuzzing re-

sults discussion . 36
7.3.2 Problems with Authentication and Association response

fuzzing . 37

8 Future Work 38

9 Conclusions 40

A Experiments 46
A.1 Monitor mode and Wireshark 47
A.2 Scapy . 48

A.2.1 Setup Scapy . 48
A.2.2 Experiment 1: Test setup by sending Beacon frames . 48
A.2.3 Experiment 2: Respond to Probe request frames with-

out flooding Probe response frames 48
A.3 Libpcap . 50

A.3.1 Setup libpcap . 50
A.3.2 Experiment 3: Send and verify Probe response 50
A.3.3 Experiment 4: Successful authentication and association 51
A.3.4 Experiment 5: Parsing of Probe response frames . . . 52

2

B Fuzzed Fields 55
B.1 Information elements . 55

B.1.1 Information element selection strategy 55
B.1.2 List of fuzzed Information elements in Probe response

frames . 56
B.1.3 List of fuzzed Information elements in Authentication

frames . 59
B.1.4 List of fuzzed Information elements in Association re-

sponse frames . 59
B.2 Generic fuzzing . 60

B.2.1 Generic Probe response fuzzing 60
B.2.2 Generic Authentication fuzzing 60
B.2.3 Generic Association response fuzzing 61

3

Chapter 1

Introduction

The IoT (Internet of Things) market is growing each year. In 2016, already
more than 6 billion IoT devices were in use and every year more devices
are added to the market [18]. Most of these devices are designed for the
consumer market and include sensors like smart thermostats and gadgets like
smart speakers with personal assistants to make life a bit more convenient.
Most of these devices are connected to the internet in some way, so the
user can connect to them using their smartphone. However, this also makes
these devices very attractive to hackers. The IoT devices can be used as an
entry to your home network, or can even become part of a botnet and be
used for DDOS attacks. A real world example of this is the botnet Mirai,
a very large botnet consisting of hundreds of thousands devices, which was
used in DDOS attacks. There are many different devices ranging from cheap
Bluetooth trackers to expensive smart TV’s and smart cars. Especially for
the cheaper devices, security might have been less of a priority. Therefore,
doing research on security of IoT devices is very important.

There are many ways to hack IoT devices. For example, one could search
for security holes in the user software or search for weak/default passwords.
However, in this thesis we will research the security of the interface proto-
col implementation, using a technique called fuzz testing. Therefore, our
research question is: How secure is the interface protocol implementation
of IoT devices?. With fuzz testing we can automatically generate and send
semi-random data to the target device and monitor if the device crashes. To
do this, we first choose an interface and protocol to fuzz. Then we made a
selection of IoT devices to test. After that we built a fuzz tester. Finally we
tested the selected devices using this fuzz tester and observed the results.
These results show which potential vulnerabilities were found for the test
devices, and therefore indicate how secure their interface implementation is.

As stated in section 2.3, we chose to fuzz Wi-Fi. While research has
already been done on this protocol using fuzzing [16][23][22], this research
is very old and has not yet been done on IoT devices specifically.

4

Chapter 2 gives background information on IoT and fuzzing, and explains
the different interfaces used in IoT and why we chose to fuzz Wi-Fi. Chapter
3 gives the relevant information about how Wi-Fi works. Chapter 4 discusses
the related work that is already done on this subject. Chapter 5 discusses
the devices that we will fuzz. Chapter 6 discusses how our fuzzer works and
what decisions we made. Chapter 7 discusses the test results we obtained
with our fuzzer. Chapter 8 discusses future work and chapter 9 concludes
our research.

1.1 Recurring problems

In this thesis, we found some recurring problems. Some of these problems
are very similar and therefore can be confusing. For this reason we give a
list of these problems. We will refer back to this list when we encounter one
of the problems. Problem 1, 4 and 5 will be referred to by a lot, since these
are also encountered in related work. Problem 4 and 5 are timing problems.

Problem 1. When we send a frame to the SUT, how do we know if the
sent frame is correctly received by the SUT?

Problem 2. When we send a frame to the SUT, which is correctly received
by the SUT, how do we know if the frame is parsed by the
SUT?

Problem 3. At which moment should we send frames to the SUT so that
the frame will most likely be parsed?

Problem 4. To reply to a Probe request frame from the SUT with a Probe
response, we have to respond within a few milliseconds before
the SUT moves on to the next channel, otherwise the sent
Probe request will be ignored.

Problem 5. When we receive a directed frame from the SUT, we have to
send an Acknowledgment frame back within a very small time
frame, to notify that the frame was received correctly.

5

Chapter 2

Background

In this chapter we will explain some background information about the def-
inition of IoT and fuzz testing. Here we will also discuss interfaces used in
IoT devices and why we chose to focus on Wi-Fi.

2.1 Definition of IoT

Before doing research on the security of IoT devices, we first need to know
what IoT actually means and what qualifies as an IoT device. It is hard
to find an exact definition of IoT and IoT devices. Many sources have
different definitions ranging from very broad to very specific definitions
[6][29][10][27][31][30][12]. Because of these different definitions, there is a
gray area of devices that are seen as IoT devices according to one definition,
but not according to another definition. For example, devices that use a
wired connection, do not have a sensor or use a non-IP based protocol are
sometimes considered to not be an IoT device.

In this thesis we give our own definition of IoT and IoT devices. We
define IoT as a network of IoT devices, and we define an IoT device as
a non-standard computing device (no smartphone, laptop, pc, server, etc.)
that can be connected to using a standard computing device (using an app,
program, website, etc.) over a computer network (a PAN over Bluetooth,
over the internet using Wi-Fi or using Ethernet, etc.). We exclude devices
that are only used for making a computer network available, like network
switches or routers.

2.2 Fuzz testing

Fuzz testing or fuzzing is a way of automatically testing software by giving
random or semi-random data to the inputs of the software, in order to
find implementation bugs [16]. It is usually applied on structured inputs of

6

software, like a .png file for an image viewer program, but it can also be
used on protocols, which are essentially also inputs for software.

There are different kind of fuzzers. There is a distinction between dumb
and smart fuzzers, and between generation based and mutational based
fuzzers. A dumb fuzzer has no knowledge of the input that it fuzzes and
makes the input completely random. This is very easy to implement, but
might not be very efficient. A smart fuzzer tries to create a semi-random
input that is just good enough for the input parser to accept, but crashes the
application using the input. In order to do this, a smart fuzzer must know
about the input it is fuzzing. A generation based fuzzer creates inputs from
scratch, while a mutation based fuzzer takes an existing input as base and
modifies that input. A black box fuzzer generates inputs without knowing
about the program, therefore treating the program as a black box. This
makes it very well suited for testing firmware or other software where the
source code is not available. A white box fuzzer generates inputs using
the code that is running on the program. While this might increase the
effectiveness of the fuzzer, it also increases the complexity of the fuzzer.
Furthermore, it might take longer to generate an input using a white box
fuzzer. A grey box fuzzer tries to combine these two types of fuzzers.

While fuzzing, it is important that the software is monitored, so you
know when the software fails and which input caused that failure. For this
thesis, we use mutation based smart black box fuzzing.

2.3 Choosing an interface

IoT devices can have very different interfaces [28] with each technology hav-
ing its own strengths and weaknesses in terms of data rate, range, power
usage and cost. For example, 3G has a relatively high data rate and range,
but the power usage and cost is also high. Some interfaces like DigiMesh
and ANT are proprietary and therefore more difficult to fuzz. Commonly
mentioned interfaces used in IoT devices that we found were Bluetooth
Low Energy (BLE), Wi-Fi (802.11), cellular (GSM), LoRaWAN and Zig-
Bee (802.15.4). Because these are used in many devices, they are the most
interesting to fuzz. In order to fuzz GSM, LoRaWAN and ZigBee, special
hardware is needed, which would require a lot of work to setup. For BLE,
it seems a device like an Ubertooth One 1 would be needed to inject frames.
In order to fuzz Wi-Fi, only an Wi-Fi dongle that supports monitor mode
and package injection is needed. This makes Wi-Fi a well suited interface
to fuzz. Because of this, we chose Wi-Fi as interface to fuzz.

1See Ubertooth Github page https://www.github.com/greatscottgadgets/

ubertooth

7

https://www.github.com/greatscottgadgets/ubertooth
https://www.github.com/greatscottgadgets/ubertooth

2.4 Wi-Fi or 802.11?

Wi-Fi and 802.11 are two related terms. Wi-Fi is based on the IEEE 802.11
standard 2 which specifies the Medium Access Control (MAC) and the Phys-
ical Layer (PHY). To make sure a device meets a certain standard for inter-
operability and security, the device can be certified by the Wi-Fi Alliance
which allows it to have a Wi-Fi Certified logo 3. It can be very confusing to
know when to use Wi-Fi and when to use 802.11. Because these terms are
very similar, we will use them interchangeably in this thesis.

2See https://www.wi-fi.org/certification
3See https://www.wi-fi.org/discover-wi-fi

8

https://www.wi-fi.org/certification
https://www.wi-fi.org/discover-wi-fi

Chapter 3

The IEEE 802.11 protocol

In this chapter, we describe the important parts of the IEEE 802.11 protocol
that relates to our research.

802.11 is a collection of specifications for wireless local area networks. It
specifies a medium access control (MAC) and physical layer (PHY) for wire-
less devices. There are many extensions for 802.11 released, indicated by the
letters after 802.11. For example 802.11b allows for faster data rates and
802.11a allows the use of the 5GHz band [24]. Different extensions of 802.11
uses different bands [26], but the mayor extensions use 2.4GHz and since the
802.11a extension also 5GHz. Since 2.4GHz is the most widely used band
within Wi-Fi, we will focus only on this band. Within the 2.4GHz band,
there are 14 different channels (not all channels are available depending on
the country), which are all slightly different frequencies with a 5MHz differ-
ence (except between the last two channels) to avoid interference. However,
the bandwidth within a channel is 22MHz (or sometimes even 40MHz for
802.11n), and therefore there is some overlap and interference between cer-
tain channels. A device can only listen and send to one channel at the same
time. While we got most of our information about 802.11 from the 802.11
specification [13], it might be useful to read the book “802.11 Wireless Net-
works: The Definitive Guide” by M. Gast [19] to read more about the 802.11
protocol, since the book is easier to read than the lengthy specification.

3.1 Networks and Operation modes

There are two types of networks used in Wi-Fi: infrastructure networks and
ad hoc networks.

Within an infrastructure network, there are two types of devices:

• client devices. This device connects to an access point so it can access
the wired network connected to the access point.

• access points. This device can allow connected client devices to access

9

Figure 3.1: General 802.11 MAC frame (size in bytes)

2 2 6 6 6 2 6 0–2312 4

Frame
Control

Duration/
ID

Address 1 Address 2 Address 3
Sequence
Control

Address 4 Frame Body FSC

the wired network connected to the access point.

In ad hoc mode there are only client devices. These devices are then
connected to each other directly. This usually means that the device cannot
connect to the internet. Therefore, we choose to focus on IoT devices that
are part of an infrastructure networks.

When we look at an infrastructure network, a Wi-Fi chip can operate in
multiple modes [17][34]:

• Client mode. In this mode the Wi-Fi chip acts as a client device.

• Access point mode. In this mode the Wi-Fi chip acts as a access point.

• Promiscuous mode. A mode used for sniffing network packets. In this
mode received packages from the connected network are passed over
to the host, even if the destination address does not correspond with
the address of the Wi-Fi chip. The host can then see the data going
over the connected network at the data link layer.

• Monitor mode. Also a mode used for sniffing network packets. In this
mode all valid (at the physical layer) received packets are passed over
to the host, without having to connect to a network. Even the frames
from adjacent channels are passed over. The host can then see the
packets at the physical layer and data link layer. If the Wi-Fi chip
and driver both support packet injection, one can use a Wi-Fi chip in
monitor mode to send arbitrary frames.

While it is common for an IoT device in an infrastructure network to be
in access point mode during the setup of the device, most of the time it will
be in client mode so it can access or be accessed over the internet. Therefore,
we will focus on client mode, leaving access point mode for further research.
This also means that our fuzzer will have to act as an access point.

3.2 Frame types and format

According to the 802.11 specification [13], a general 802.11 MAC frame
consists of the fields shown in Figure 3.1. However, not all fields are used
in each frame type. The frame type is specified in the Type and Subtype

10

Figure 3.2: Frame Control header (size in bits)

2 2 4 1 1 1 1 1 1 1 1

Protocol
Version

Type Subtype To DS
From
DS

More
Frag-
ments

Retry
Power

Manage-
ment

More
Data

WEP Order

fields within the Frame Control header, as illustrated in Figure 3.2. There
are three main frame types, specified by the Type field:

• Control frames. These frames are used help with frame delivery. They
always have the To DS, From DS, More Frag, Retry, More Data, WEP
and Order fields set to 0 within the Frame Control header. Also, they
do not have a Frame Body field. There are different frame formats for
the different subtypes.

• Management frames. These frames are used to connect to and discon-
nect from a device. Aside from not having an Address 4 field, they
have the same format as the general 802.11 MAC frame.

• Data frames. These frames are used to send data. They have the same
format as the general 802.11 MAC frame.

We will discuss the subtypes of these types in section 3.3.

3.3 connection states

Within 802.11 there are three states, which we will call connection states,
between a client device and an access point:

connection state 1. Unauthenticated and unassociated. This is when the
client device is not connected to any access point.
During this state the client device will most likely
scan for access points to connect to.

connection state 2. Authenticated and unassociated. This is when the
client device is authenticated with the access point,
but not yet associated and therefore cannot transfer
data yet by sending data frames.

connection state 3. Authenticated and associated. This is when the client
device can send and receive data frames over the net-
work.

11

During each of these connection states, only certain types of frames are al-
lowed. The frames allowed in connection state 1 are called class 1 frames,
the new frames allowed in connection state 2 are called class 2 frames, and
the new frames allowed in connection state 3 are called class 3 frames. Fur-
thermore, all frames from the lower connection states are allowed as well.
According to the 802.11 specification, the subtypes of frames that are al-
lowed in connection state 1 are the following1:

• Control frames

– Request to send (RTS)

– Clear to send (CTS)

– Acknowledgment (ACK)

– Contention-Free (CF)-End+ACK

– CF-End

• Management frames

– Probe request/response

– Beacon

– Authentication

– Deauthentication

– Announcement traffic indication message (ATIM)

• Data frames

– Data frames with frame control (FC) bits “To DS” and “From
DS” both false

The extra frames allowed in connection state 2 are (Re)Association re-
quest/response frames and disassociation frames (both are management
frames).

The extra frames allowed in connection state 3 are Data frames with no
limitation on the “To DS” and “From DS” bits and PS-Poll control frames.

The current connection state can change when there is a successful au-
thentication or association (see section 3.7) between the client device and
access point, or when a deauthentication or disassociation frame is sent to
the client device. See figure 3.3

1There are more frames added in several extensions of the 802.11 standard. However,
we will keep our focus on the main specification and therefore ignore the other frames

12

Figure 3.3: Wi-Fi connection states

3.3.1 Fuzzing in which connection state?

It might seem logical to do all the fuzzing in state 3, since in this state
all types of frames are allowed. Earlier research has also done this [23].
However, we choose not to do this. For example, if we fuzz Probe response
frames, we want to send these Probe response frames as an answer to Probe
request frames from the system under test (SUT), since this is the only mo-
ment that the SUT expects the Probe response frame (see section 3.6). We
expect that this increases the chance that the frame is parsed, and therefore
increases the chance that we find some kind of implementation error in the
SUT. If we send a Probe response frame while the SUT has not sent a Probe
request frame, we expect that the SUT will most likely drop the frame early
on without parsing all data of the frame. This corresponds with problem
3 of section 1.1. The same holds for other frames, like Authentication and
Association response frames. We can confirm that this design decision to
only send frames when the SUT expects them, indeed increases the chance
of finding an implementation error, since only this way, we were able to
crash a Nintendo DSI XL with Probe response frames (see section 7.1).

3.4 Interesting frames to fuzz

The most interesting frames to fuzz would be the frames allowed in con-
nection state 1, because in case a vulnerability is found, the targeted client

13

device would be vulnerable from the moment Wi-Fi is turned on without
having to connect to a specific access point and therefore minimizing the
user interaction. For example, when someone turns on Wi-Fi on their smart-
phone, it might listen for Beacon frames, a frame allowed in connection state
1 used during the scanning for networks (see section 3.6). If the parser of
the Beacon frames has some kind of vulnerability, and attacker can craft
a specific Beacon frame and send this to the smartphone to exploit this
vulnerability. If the smartphone is already connected to a network, it will
probably not listen to Beacon frames anymore, which gives the attacker a
small attack window. However, some devices like the Google Chromecast
(see section 5.2.1) continue to scan for networks while they are in connection
state 3. This gives a huge attack window.

Furthermore, the frames used to authenticate and associate with the
access point would also be interesting. For example, in case of an open
network, if a device has an exploit in the parser of the authentication or
association frames, an attacker could disconnect this device from a network
using a deauthentication attack [32] which can cause the targeted device to
reconnect to the network. The attacker then might respond to the authen-
tication and association frames with specially crafted frames to exploit the
vulnerability. In this case, the attack window would be very large.

When we look at just the types of frames, we can say the following: For
the control frames, the RTS, CTS, ACK and PS-Poll frames only contain
a Frame Control, Duration (Association ID for PS-Poll frames), Receiver
Address (and Transmitter Address for RTS and PS-Poll frames) and FSC
field. These fields do not seem interesting to fuzz. The CF-End and CF-
End+ACK frames are only used in Point Coordination Function (PCF)
mode [25] and PCF is rarely implemented. Because these frames are rare,
they might not have been tested and are therefore interesting to fuzz. How-
ever, they do not contain a frame body and have no fields with bounds or
variable length.

As for the management frames, the Probe response and Beacon frames
are the most interesting to fuzz, because these frames are parsed by the de-
vice during scanning, and can contain many information fields. See section
3.6.1 for a more detailed explanation and see section 3.6 for a detailed expla-
nation about scanning. The Authentication and (Re)Association response
frames could also be interesting, because these frames also contain certain
information elements. Furthermore, the Deauthentication and Disassocia-
tion frames contain a reason code element that is expected to be two bytes
long, which might be interesting to fuzz.

However, the ATIM frame is only used in ad-hoc mode, and the (Re)Association
request and Probe request are usually only sent by the client device, and
therefore are these frames not that interesting. Though it might be inter-
esting to find out how a client device would react to a Probe request and
(Re)Association request frame.

14

The data frames are not interesting to fuzz, since the frame body will
not be parsed by the firmware or driver.

3.5 Acknowledgment frames

Since all frames are sent wireless susceptible for interference and devices can
move away from each other, not all sent frames will arrive at destination
device. The 802.11 standard specifies that all directed traffic uses ACK
frames to verify if a frame is received. This means that when device A sends
a directed frame to device B, device B will have to send an ACK frame back
to A if it successfully received the frame. If device A does not receive an
ACK frame within a small amount of time, it will retransmit the frame until
it received an ACK or until it has retransmitted for a certain maximum of
times. Undirected frames like Beacon frames do not require an ACK frame
and are therefore harder to verify, which corresponds to problem 1 of section
1.1. For this reason, we decide not to fuzz Beacon frames.

3.6 Scanning

In order for a client device to connect to an access point, it has to know
which access points it can connect to. This can by done by a process called
scanning. Scanning is usually done in state 1. It can be done for a short
time, or continuously with some interval, depending on the application that
controls the Wi-Fi chip. There are two ways a client device can scan for
access points:

• Passive scanning. In this mode the client device listens to Beacon
frames that are periodically sent by access points. In these Beacon
frames, all required info to connect to the access point is provided.
The client device self does not send any frames. This way of scanning
is the slowest one, because the client device has to wait for Beacon
frames to be sent.

• Active scanning. In this mode the client device sends a Probe request
frame in each channel that it wants to scan to the broadcast address.
The Probe request also contains the SSID of the access point that
should respond (this SSID is usually empty, since this requires all
access points to respond). After an access point receives a Probe
request with a matching SSID, it returns a Probe response to the
address of the sender, containing all required information. The client
device sending the Probe request only listens for Probe response frames
for some time before moving on to the next channel. This timeout
is not specified by the specification and therefore can vary between
devices. When a Probe response is successfully received, the client

15

Client device Access point

Probe request

Probe response

ACK

Figure 3.4: Active scanning sequence diagram

device sends back an ACK frame to the access point. See figure 3.4
for the diagram showing the active scanning process.

3.6.1 Beacon and Probe response frames

Beacon and Probe response frames have some required and optional fields
within the Frame Body. The first three fields are of fixed size, while all
other fields are of variable size. The order of these fields is also specified.
According to the specification, this is how the frame body should look like:

1. Timestamp (8 bytes)

2. Beacon interval (2 bytes)

3. Capability information (2 bytes)

4. Information elements (variable size)

The format of an information element can be seen in Figure 3.5. All infor-
mation elements have an unique ID and the variable length is defined by the
length field. Since these fields are probably parsed, it is very interesting to
fuzz these fields. With newer 802.11 extensions, more information elements
were added, giving us more fields to test. Originally, there were only eight
information elements. In the 2012 version there were already more than
one hundred elements defined. For this reason, we choose to use the 2012
revision of the 802.11 standard [14] to find the information elements that we
want to fuzz (see appendix B.1)

The Beacon and Probe response frames are very similar, however there
are a few differences between them. The Beacon frame can have a TIM
information element, which should only be present within Beacon frames

16

Figure 3.5: Information Elements (size in bytes)

1 1 length

Element
ID

Length Information

generated by access points. Furthermore, when the scanning client device
successfully receives a Probe response frame as an answer on a Probe request,
it sends an ACK frame back. This ACK frame can be used to verify if the
Probe response is received, solving problem 1 of section 1.1. An ACK frame
is not sent when a scanning client device receives a Beacon frame, which is
the reason why we will not fuzz Beacon frames.

3.7 Authentication and Association

When a client device wants to connect to an access point, it has to authenti-
cate and then associate with the access point. To keep things simple, we will
assume the access point serves an open network. The process of connecting
is shown in figure 3.6. Note that for each sent directed frame, an ACK frame
is expected to be received (see section 3.5).

Initially, the client device and access point are in connection state 1,
which means they are unauthenticated and unassociated with each other.
To authenticate with an access point, the client device has to initiate with
an Authentication frame with 1 as sequence number. The access point then
responds with the same frame, but with 2 as sequence number. At this
point, the client device and access point are in connection state 2. To get
in connection state 3, the client device has to send an Association request
frame, to which the access point has to reply to with an Association response
frame.

17

Client device Access point

Authentication with Seq=1

ACK

Authentication with Seq=2

ACK

Association request

ACK

Association response

ACK

Figure 3.6: Authentication and association sequence diagram with an un-
protected network

18

Chapter 4

Related Work

This chapter discusses the related work on 802.11 fuzzing and show the
problems that were encountered in this work and the solutions that were
proposed. For these problems we refer back to section 1.1.

When looking at 802.11 fuzzing, some research already has been done.
However, this research is already more than ten years old and we could
not find any research done on 802.11 fuzzing for IoT devices (as defined in
section 2.1).

Butti and Tinnès [16] show how to fuzz 802.11 in state 1 (see chapter 3.3)
using Scapy or Lorcon. They mainly focus on the the Information elements
of Beacon and Probe response frames. With their fuzzer they fuzzed several
802.11 driver implementations in what appears to be PCs running Windows
or Linux. They found four vulnerabilities in certain Wi-Fi drivers using their
fuzzer [2][3][5][4]. These vulnerabilities were found by overflowing the rates,
SSID, TIM, and RSN information element. Their approach was to send
many Beacon and Probe response frames for several seconds, to increase
the chance that the frames were received by the SUT. The main problem
with this approach is that they still could not verify if the sent frames were
being received or not, which corresponds to problem 1 and 4 from section
1.1. Furthermore, they say that in order to fuzz other states, one need to
reply to ACK incoming frames within a short time frame that is not easily
achievable for user-land applications, which is problem 5 of section 1.1.

These three problems (problem 1, 4 and 5) are also addressed by Keil
and Kolbitsch [22]. They propose a solution where they emulate the wireless
environment and therefore eliminate the physical wireless device. While this
does give more control and the ability to fuzz other states, one could only
test the driver of a wireless device. Furthermore, the code of the driver has
to be available in order for this to work. Since there usually is no source
code available for IoT devices and no way to emulate those devices as far as
we know, this solution would not work in our case. They used their method
to fuzz the Atheros Windows XP driver and the MADWifi drivers.

19

As described by Keil and Kolbitsch, a common way to fuzz 802.11 devices
is as follows: First the fuzzer listens to probe request frames to make sure
the SUT is listening to frames and only then the SUT is flooded with frames.
This is used as solution to problem 1 of section 1.1. Usually there also is
some kind of second connection to the SUT via Ethernet or USB to monitor
the device in some way, for example by parsing logs, detecting OS crashes
or running a monitoring program on the SUT. This way of monitoring is
usually not possible for IoT devices, as there is probably no easy way to
obtain information about the state of the device using another interface.

Another research on 802.11 fuzzing by Mendonça and Neves [23] uses a
smart trick to fuzz other states than just state 1 by avoiding problem 5 of
section 1.1. They use a real access point to manage the state of the SUT.
Using a second Wi-Fi device, they then send custom frames to the SUT
with presumably the same MAC address of the real access point. While this
lowers the complexity of the fuzzer, it does not allow for proper fuzzing of
the authentication and association frames, because these frame will be sent
by the real access point. When these frames are sent by the fuzzer, the SUT
does not expect these frames and will probably be dropped. This problem
corresponds to problem 3 of section 1.1. Furthermore, their setup has no
method to indicate whether a frame is actually received by the SUT, which
corresponds to problem 1 of section 1.1, and therefore they had to send each
frame multiple times. They used their fuzzer to fuzz an HP iPAQ hw6915
PDA running Windows Mobile 5. There is also an article from 2012 by
Wang and Zhou which describes the same research with as difference that
the SUT is an Android smartphone [33]. However, this research appears to
be invalid, since it uses mostly copied or slightly modified text, images and
results from the paper by Mendonça and Neves, without any citation.

In contrast to the methods of fuzzing we described, our setup (see chapter
6) does allow fuzzing all states without emulating the wireless device or using
a second access point. It solves all three problems that the other research
encountered (problem 1, 4 and 5 of section 1.1). This allows us to fuzz the
authentication and association process.

20

Chapter 5

Selecting devices to fuzz

In this chapter we discuss the requirements for a device to be fuzzed by our
fuzzer, and discuss potential devices to see if they are a suitable test device.

5.1 Requirements

In order to fuzz a certain IoT device with our fuzzer, it has to meet the
following requirements:

1. Since we chose to focus on IoT devices in client mode in an infrastruc-
ture network (see section 3.1), the test devices also need to support
this mode.

2. It is important that the device scans for networks at some point (see
section 3.6), so it can communicate with our fuzzer. This allows us to
fuzz Probe response frames.

3. The device has to scan repeatedly for networks, preferably without
timeout and without requiring any user interaction between each scan,
so we can automate the fuzzing process. However, a long timeout of
at least a minute would also be acceptable, as long as the device sends
many frames per minute.

4. (optional) In order to fuzz the authentication and association frames,
the device has to repeatedly try to authenticate and associate to our
fuzzer, preferably without a timeout and without requiring any user
interaction between each attempt.

5.2 Potential devices to fuzz

We already had a number of IoT devices available that are potentially suited
for fuzzing. Using Wireshark [11] and a Wi-Fi dongle in monitor mode, we

21

monitored the Wi-Fi traffic from and to these devices to see if they are suited
for our fuzzer.

5.2.1 Google Chromecast

The Google Chromecast (H2G2-42, first generation from 2013) is a dongle
that can be plugged in a TV using HDMI. It connects to an access point
using Wi-Fi. A smartphone or computer that is connected to the same
network can then cast videos to this device. According to iFixit [21] the
first generation Chromecast uses an AzureWave AW-NH387 chip.

When the device is not setup yet, it starts in access point mode so a
smartphone can connect to it and set it up using the Google Home app.
During this setup the Chromecast, in client mode while using a different
MAC address, starts to scan continuously for access points until a network
is selected on the smartphone. This means that requirement 1, 2 and 3 from
section 5.1 are met.

When a network is selected on the smartphone, the Chromecast will
continuously try to connect to the network. When it cannot obtain an IP
address, it will disconnect and retry connecting to the access point, redoing
the authentication and association phase. While this only happens every 7
seconds, it will go on forever until the device cannot connect to the access
point anymore. This means that also requirement 4 is met.

Also, when setup is done, the device still sends Probe requests every
minute with the SSID parameter of the connected network, making it always
vurlnerable in case a vulnerability is found in the the Probe response parser.

5.2.2 Google Chromecast Audio

The Google Chromecast Audio (RUX-J42, from 2015) is much like the orig-
inal Chromecast (see section 5.2.1), except it only outputs audio. It was
released two years after the original Chromecast and alongside the second
generation Chromecast. According to iFixit [20] it uses a different and newer
Wi-Fi chip, the Marvell Avastar 88W8887. This means that the driver im-
plementation would be different from the original Chromecast and therefore
we find that this device is also interesting.

As for Wi-Fi, the device works exactly as the original Chromecast. This
means that all four requirements from section 5.1 are met as well.

5.2.3 Raspberry Pi 3

The Raspberry pi 3 is a single-board computer with Wi-Fi. While it is
basically a very small PC, it has a GPIO header to allow external devices
like sensors to be connected. It can be used for many IoT projects and
usually runs on Linux. One could even install the Windows 10 IoT OS on
it. Therefore, we see it as an IoT device. This also means that this device is

22

not a black box, giving us more options in terms of monitoring an controlling
the Wi-Fi chip.

Since we can run our own applications on the OS, we can build an appli-
cation that sets the Wi-Fi chip in client mode, scans for access points with
a certain interval and connects/disconnects to our fuzzer. Therefore all four
requirements from section 5.1 are met, making it a suited device for fuzzing.

5.2.4 Orange Pi Zero

An alternative to the Raspberry Pi 3 (see section 5.2.3) is the Orange Pi
Zero, which also has onboard Wi-Fi. This device is a cheaper and smaller
alternative to the Raspberry Pi 3. It has the same purpose and also runs
Linux, which allows us to create our own application that controls the Wi-Fi
chip. Therefore all four requirements from section 5.1 are met, making it a
suited device for fuzzing.

5.2.5 Unfit devices

There are a number of devices that were not suited for fuzzing with our
fuzzer. These devices will be described here.

The Microsoft wireless display adapter is a dongle that plugs into a TV or
monitor using HDMI. The difference between this devices and a Chromecast
(see section 5.2.1) is that the Microsoft adapter directly displays the data
sent over Wi-Fi on the display. In order to this, it uses Wi-Fi in ad hoc
mode. Therefore requirement 1 from section 5.1 is not met and we cannot
fuzz it with our fuzzer. The same goes for the Sony DSC-QX10 camera.
This device can also only operate in ad hoc mode.

The Panasonic Lumix DMC-LF1 is a compact camera with Wi-Fi func-
tionality. It can operate in either ad hoc mode or in client mode, which
meets requirement 1. While the device does scan for access points, it re-
quires pressing a button each time it should scan. Therefore, requirement 3
is not met, making the device unsuited for fuzzing. The same goes for the
Brother MFC-J4510DW Wi-Fi enabled printer. It cannot scan continuously
without using the touch screen between each scan.

5.2.6 New devices

We also looked at other types of Wi-Fi enabled IoT devices that we did not
already have around. The downside of using these devices is that we cannot
verify using Wireshark if the device meets all requirements from section 5.1
without buying the device.

We looked at the following three types of devices:

• Wi-Fi Smart Plug. With this device one can turn on or off any device
that can be plugged into a wall outlet over the internet

23

• Wi-Fi Doorbell with camera. With this device one can see who rang
the doorbell from over the internet

• Wi-Fi Smart security camera. With this device one can look live from
the security camera over the internet without the need for a wired
internet connection between the camera and the router

Because of the cheap price of the Wi-Fi Smart Plug, which sometimes can
be bought for just under twenty euros, we decided to buy a Wi-Fi Smart
Plug. We chose the Caliber HWP101E, because it was the cheapest.

Caliber Wi-Fi smart plug

The Caliber HWP101E is a smart plug that lets you turn on or off any device
that is plugged in the smart plug using an app. The device can be setup
in two modes. Since we could not figure out how the first mode works, we
chose to use the second mode, which is called AP mode. In this mode the
smart plug goes into access point mode so a smartphone with the Caliber
app can connect to it. The network configuration will be sent from the
smartphone to the smart plug using this app. Then the smart plug disables
AP mode and tries to connect to the network. The device itself does not
scan for networks. However, it does send Probe requests with SSID from
the network configuration when it tries to connect to the network. While it
might decrease the chance that most information elements from our fuzzer
are parsed, it does meet the requirement 1 and 2 from section 5.1. Because
the device does not have any timeout, requirements 3 and 4 are also met,
making it a good test candidate.

5.2.7 Final selection of IoT test devices

We chose to use the following devices, which we described above, as our
main test devices (a picture of the devices can be seen in figure 5.1):

1. Orange Pi Zero

2. Chromecast

3. Chromecast audio

4. Raspberry Pi 3

5. Caliber HWP101E Smart Plug

24

Figure 5.1: Main test devices

5.2.8 More test devices

Our fuzzer is not limited to test only Wi-Fi enabled IoT devices, since it
should be able to test any Wi-Fi enabled devices that meets the requirements
from section 5.1. Modifying our fuzzer to test other devices costs practically
no effort, since we only have to change one line of code to select the test
device. Because of this, we also want to test other devices to see how robust
they are. These devices include smartphones and game computers with Wi-
Fi. More specifically, we want to run our fuzzer on the following devices:

• Samsung Galaxy S6

• LG Optimus G

• Samsung Galaxy Ace

• Nintendo DS

• Nintendo DSI XL

25

Chapter 6

Fuzzer

In order to fuzz the devices we chose in chapter 5, we have to use a fuzzer.
In this chapter we will discuss the structure of our fuzzer and what options
we have with the decisions we made for each part of our fuzzer. In the end
we also give our thoughts about writing a fuzzer in C compared to writing
it in Python.

6.1 Structure

There are three main parts of our fuzzer:

• A part that handles sending and receiving frames using our Wi-Fi
dongle. We will call this part the Wi-Fi Controller.

• A part that generates the fuzzed frames which also decides which part
of the frame to fuzz. We will call this part the Fuzz Controller.

• A part that monitors the system under test (SUT) to verify if a frame

Figure 6.1: Fuzzing setup diagram

26

is received by the SUT and to verify if the SUT is still up and running.
We will call this part the Monitor.

Our fuzzing setup using these parts is illustrated in figure 6.1

6.2 Wi-Fi Controller

The Wi-Fi Controller is a very important part of our fuzzer, since it handles
sending and receiving frames using our Wi-Fi dongle. Because this is a very
fundamental part, we decided to start with creating the Wi-Fi Controller
instead of the Fuzz Controller or Monitor.

We found several options to communicate with our Wi-Fi dongle:

• Scapy. Scapy is a library for Python. With it one can easily send and
receive 802.11 frames. While it is very easy to use, it might not be the
fastest option, because it runs on Python.

• Libpcap. Libpcap is a library for C in Linux. Since it runs on C, it
might be a very fast option. However, it is less easy to use than Scapy.

• RAW socket programming. RAW socket programming in C on Linux
seems the most direct way to access a network interface in a user-land
program. However, it is also a very complex.

• Lorcon. Lorcon is a Metasploit module for 802.11 packet crafting.
These libraries are not maintained anymore and the official website is
down [7].

Because support for Lorcon is lacking and RAW socket programming
seems very complicated, we had to choose between Scapy and libpcap. Scapy
looks very easy compared to libpcap, and therefore we decided to build our
fuzzer with Scapy. However, as we will describe in section 6.2.1, we were
unable to achieve high enough performance using Scapy which resulted in
timeouts in some of our test devices. Therefore, decided to use libpcap for
our final design.

6.2.1 Scapy

To make sure we could send and receive frames with our setup using Scapy,
we did some tests first (see appendix A.2). Our first experiment shows that
we are able to send Beacon frames. Our second experiment shows that we
can also listen to Probe request and respond to them with Probe responses.
When a Probe response is successfully received by a scanning device, an
ACK is sent back. However, not all devices that we tested with received the
Probe response within their timeout. This problem corresponds to problem
2 of section 1.1. We measured the time it took to respond using Wireshark

27

and found out that it took 0.03 seconds, which is quite long. Because we
want to make sure a Probe response is received by the SUT by listening to
ACK responses, we cannot solve this issue by flooding frames. Therefore,
we decided to try libpcap to see if that would reduce this delay. The reason
for this is that Python (used with Scapy) uses an interpreter to translate
python code to machine code at runtime, while C (used with libpcap), a
lower level language, is compiled directly to machine code. In theory this
means that C could be faster than Python.

6.2.2 libpcap

With libpcap, we did some tests to verify if the delay between receiving and
sending a frame would be less than with Scapy (see appendix A.3 experi-
ment 3). We found out that we could respond about ten time faster with
libpcap, solving problem 4 of section 1.1. Furthermore, we were also able
to consistently verify frames by listening to ACK frames, solving problem
1 of section section 1.1. When we tried to simulate the authentication and
association phase (see appendix A.3 experiment 4), we found out that the
firmware of our Wi-Fi dongle takes care of sending ACK frames, solving
problem 5 of section section 1.1. This allows us to fuzz the authentication
an association phase.

6.3 Fuzz Controller

The Fuzz Controller has to provide fuzzed frames and needs to manage what
parts of the frame needs to be fuzzed. Using existing fuzzer for this might
save some time, since we do not have to build one ourselves. However, an ex-
isting fuzzer might be less customizable than a self-built one. Furthermore,
understanding the code of a fuzzer created by someone else might take quite
some time.

We looked at the following options for a Fuzz Controller:

• Sulley. Sulley is a fuzzing framework written in Python [9]. There
exists an 802.11 fuzzer that uses this framework [15]. Because all of
the code is written in Python, it would be hard to link the code with
our Wi-Fi Controller without taking a significant performance hit.

• BeSTORM. BeSTORM is an enterprise smart fuzzer [1]. It does not
seem to be a good option, because it is closed source.

• Peach Fuzzer. Peach Fuzzer is a general fuzzer which has modules
including one for Wi-Fi [8]. It states that it only works with certain
Ralink chipsets and does not seem very customizable.

• Build our own Fuzz Controller. This would allow us to create a fast
Fuzz Controller in the same language as our Wi-Fi Controller.

28

The existing fuzzers that we found do not really look easy to customize
to our needs. Also, the fuzz controller would need to be very fast, since we
do not want to increase the delay between receiving and sending a frame
by much. This is not easy to test without using the fuzz controller, which
could take a lot of time. Furthermore, a Fuzz Controller should not have to
be a very complex piece of software, so we decided to build one ourselves.

6.3.1 Authentication and Association Beacon frames

We found that certain devices like the LG Optimus G have trouble with
authenticating and associating with our fuzzer, because we do not send out
Beacon frames. To counter this, we wrote a simple second program1 using a
second Wi-Fi dongle in monitor mode to send out Beacon frames every 100
milliseconds. We use a second program and dongle for this, since libpcap
blocks the program when it is listening for frames, which makes it hard to
send out Beacon frames.

6.3.2 Fuzzed frames

We decided to mainly focus on the Probe response frames because of the
large number of information elements, and if possible also the authentication
and association response frames (see section 3.4). This means that our fuzzer
will have to reply to the frames sent by the SUT. Because the SUT usually
is a black box, we cannot control its interval between sending. This means
our fuzzer can only respond at the same speed as the SUT sends requests.
Because of the limited number of frames that we can send per minute, we
decided to not use a random number generator. Instead, we manually give a
range of number to try. This way we can test the most interesting numbers
for each field that we fuzz. While this lowers coverage, it increases the
efficiency of the fuzzer.

We created a fuzz controller for the following frames:

• Probe response frames. We created sub-fuzzers for a selection of
twenty information elements that we found the most interesting, listed
in section B.1. Furthermore, we did some general fuzzing on the Probe
response frames.

• Authentication frames and Association response frames. Since we
need to send an Authentication frame before sending an Association
response frame, we made a single fuzzer for these two frames with
two variations. The first variation fuzzes the Authentication frames
and sends a default Association response frame. The second varia-
tion sends a default Authentication frame, and fuzzes the Association
response frame. For the Authentication frame, we only fuzzed the

1See BeaconSender on https://b4rt.nl/git/bart/cfuzz

29

https://b4rt.nl/git/bart/cfuzz

Challenge text information element aside from general fuzzing, since
this is the only element that is somewhat expected in an Authentica-
tion frame. For the Association response frame, we fuzzed aside from
general fuzzing six different information elements that can be included
in Association response frames. These elements are listed in section
B.1.

6.4 Monitor

The monitor verifies if a sent frame is received by the SUT and checks if
the SUT has crashed to a certain frame. This part of the fuzzer is specific
for our fuzzer only, so building our own monitor is our only option. As
seen in earlier research [16][16], one could monitor locally on the SUT and
inform the fuzzer using a secondary interface. While in our case this is
possible to do on the Raspberry Pi or Orange Pi Zero (see section 5.2.3 and
5.2.4), this approach would not be possible on the other devices that we
will test, because those devices are a black box and do not allow for custom
applications and have no secondary interface. Therefore, we will monitor
the SUT by monitoring its Wi-Fi traffic.

6.4.1 Acknowledgment of receipt

We can verify certain directed frames by listening for ACK responses (See
section 3.5). However, an ACK frame does not contain a source address.
This means that an ACK frame might have come from another device. To
counter this, we make sure to only send frames to and receive frames from
the MAC address of the SUT. This way we can listen for ACK frames after
sending a frame to verify if the sent frame was arrived correctly, solving
problem 1 on section 1.1 (see appendix A.3 experiment 3). We first did this
by checking if the first received frame after sending our own frame was an
ACK frame. While this worked most of the time, it did not if the system
under test was sending two of the same frames directly after each other.
Therefore, we changed our Monitor to listen for ACK frames for a certain
amount of time instead. This solved the issue. As seen in the experiment
described in section A.3.4, not all acknowledged frames are always parsed,
which corresponds to problem 2 of section 1.1. Therefore, we decided to have
each frame be ACKed multiple times before moving on to the next frame.
By doing this, we significantly decrease the chance that an acknowledged
frame is not parsed by the SUT, solving the problem.

6.4.2 Crash monitoring

Since we do not always have a way to connect to the SUT over a second
interface to monitor the device, we need another way of determining if the

30

SUT is still running. We decided that the SUT has crashed when it would
not reply with an ACK frame for more than ten times in a row. Furthermore
we also check if the SUT has stopped sending out frames for a long period
of time.

Crashing firmware, driver or application

We expect three different types of crashes that can occur during the fuzz
testing:

• Firmware crashes. The firmware is the software that runs on the Wi-Fi
chip itself.

• Driver crashes. The driver is the software on the SUT that handles
communication with the Wi-Fi chip.

• Application crashes. The application is the software on the SUT that
uses the Wi-Fi functionality.

6.5 Writing the fuzzer in C

Since we decided to use libpcap for our Wi-Fi controller, we had to write it
in C. To maximize the performance of our fuzzer, and to prevent issues with
combining two programs written in different languages, we decided to build
our entire fuzzer in C. Compared to Scapy and Python in general, it would
have been way easier to write the fuzzer in Python. A program like a fuzzer
is a lot easier to make when you can use an object oriented programming
language. With Python you also do not have to worry about allocation and
deallocation of variables on the stack or the heap, and if a returned variable
still exist when the program leaves the function that defined the variable.
Also, with Python one does not have to worry about pointers. For these
reasons, we would recommend to use Scapy in Python, as long as relatively
slow performance is not an issue.

31

Chapter 7

Results

Here we describe the results of our fuzzing tests on our selection of devices
and discuss them. We combined the results and discussion of the Authenti-
cation fuzzing and the Association response fuzzing, because we fuzzed these
two frames in a very similar manner (as described in section 6.3.2).

7.1 Nintendo DSI XL ERP element crash

During the creation of the Probe response fuzzer, we found that the Nintendo
DSI XL, a game computer with Wi-Fi, crashed when it was fuzzed by our
fuzzer. This happens with the following setup.

On the DSI, the System Settings application should be opened. In this
settings menu, the user has to select the Internet option, then go to Connec-
tion Settings and select any of the six connection slots. In this connection
setting, the user has to select the AOSS option (since the Scan Networks
option uses passive scanning and therefore does not send Probe request
frames). When this option is selected, the display should look the same as
in figure 7.1 so the DSI will start sending Probe request frames. When these
Probe request frames are answered by first a valid frame (or valid enough
for the DSI) and then a frame with an ERP information element with a
length between 131 and 253 bytes (including 131 and 253), then the sys-
tem freezes. Most of the time, this only happens after multiple responses
are sent. Sending the same frames to the DSI when it is not in the AOSS
menu will not have any impact on the system. When the system freezes, all
buttons and touch screen are unresponsive. The audio should also freeze.
The only way to revert the system to a normal state is to do a hard reset by
either reinserting the battery or by holding the power button for multiple
seconds. In some rare cases the DSI XL does not freeze, even after a few sec-
onds. We suspect that a number of other access points have to be in range
in order for the device to crash, since the device does not crash at certain
locations where the DSI does not find several networks. The reason why the

32

Figure 7.1: Nintendo DSI XL active scanning

system only crashes under these conditions is unknown, since information
about the software running on the DSI is not available. We think that the
crash is caused in the application and not in the firmware or driver of the
Wi-Fi chip, since we have to send two different frames to make the device
crash, and it only crashes under certain circumstances. However, the driver
probably should have dropped the frame with the invalid RSN information
element, since it contains an invalid information element. If that happened,
the DSI would not have crashed.

7.1.1 Conclusions

We can draw two conclusions from this result:

1. Because the DSI XL only crashes to Probe response frames as a reply
to Probe request frames, we can conclude that our design decision to
only send frames when the system under test expects them (see section
3.3.1) increases the chance to find a weakness in the system under test,
solving problem 3 of section 1.1.

2. Because it usually takes multiple frames before the device crashes, it
might be the case, even though we cannot be sure without an addition
experiment, that while all fuzzed frames are acknowledged by the DSI,

33

not all frames are processed by the application. This problem corre-
sponds to problem 2 of section 1.1. A possible explanation might be
that during active scanning, the device sends multiple Probe requests
over different channels, as described in section 3.6. When we reply
with a Probe response on different channels, it might be the case that
the driver parses or returns only one of these Probe responses because
it expected just one Probe response, since an access point usually only
listens and replies on one channel.

To verify this hypothesis, we did an experiment with client devices
scanning for access points, which we describe in full detail in section
A.3.4. We saw that while one client device parsed all acknowledged
frames, the other client device did not. This means that at least for
some devices, not all acknowledged Probe response frames are parsed
up until the application that uses those frames. Therefore, it might
be useful to modify the fuzzer so it will only send the next frame af-
ter multiple confirmations of the same frame, based on the number
of confirmations or based on a timer. This is not useful to do on Au-
thentication and Association response frames, since these are definitely
parsed, and because the SUT only expects one frame anyway.

7.2 Probe response fuzzing results

For the Probe response frames, we fuzzed a selection of twenty information
elements and some more generic parts of the Probe response frame (see
appendix B). The results of the fuzzer can be seen in table 7.1.

Device Problems found Time (Hours)

Orange Pi Zero No problems detected 1

Chromecast No problems detected 10

Chromecast Audio No problems detected 10

Raspberry Pi 3 No problems detected 1

Caliber Smart Plug No problems detected 1

Samsung Galaxy S6 No problems detected 2

LG Optimus G No problems detected 1

Samsung Galaxy Ace No problems detected 10

Nintendo DS No problems detected 1

Nintendo DSI XL Entire system freezes 1

Table 7.1: Probe response fuzzing results

34

7.2.1 Probe response fuzzing results discussion

As seen in table 7.1, only the Nintendo DSI XL showed problems when we
fuzzed it. To be more specific, the entire system freezes when during the
AOSS setup as described in section 7.1, a Probe request is answered with
an Probe response with an 253 bytes long ERP information element. This
also happens when an Extended Supported Rates or Vendor Specific: WPS
information element of the same length of 253 bytes is sent. Finally, the
device also crashes if a RSN information element is sent with a very long
cipher suite length, such that the frame is also 253 bytes long.

7.2.2 Problems with Probe response fuzzing

While fuzzing the Probe response frames, we encountered several problems:

• The small time frame for responding a Probe request frame with a
Probe response frame (problem 4 of section 1.1). As stated in section
6.2.2, we solved this by using libpcap in C.

• As stated in section 6.3.2, some devices do not send Probe request
frames that often and this sending frequency cannot be altered because
they are black box devices. To limit the time needed for fuzzing the
devices, we had to also limit the amount of frames that we send. As
seen in table 7.1, the two Chromecasts still took about ten hours to
fuzz.

• Some devices do not parse all received Probe response frames, even
though they have received them correctly (problem 3 of section 1.1).
As stated in section 6.4.1, we solved this by sending the same frame
multiple times, to reduce the chance that this frame is not parsed.

• Some devices like the Orange Pi Zero would send two Probe requests
very fast after each other, which caused our Fuzz monitor to report
unacknowledged frames. We solved this by using a timer for listening
for acknowledgments, instead of just listening to the next received
frame.

7.3 Authentication and Association response fuzzing
results

For the Authentication and Association response frames, we fuzzed several
parts as described in appendix B. The results of the fuzzer can be seen in
table 7.2 and in in table 7.3.

35

Device Problems found Time (Hours)

Orange Pi Zero Unable to test na

Chromecast No problems detected 3

Chromecast Audio No problems detected 3

Raspberry Pi 3 No problems detected 2

Caliber Smart Plug No problems detected <1

Samsung Galaxy S6 No problems detected 4

LG Optimus G No problems detected 2

Samsung Galaxy Ace No problems detected <1

Nintendo DS Unable to test na

Nintendo DSI XL Unable to test na

Table 7.2: Authentication fuzzing results

Device Problems found Time (Hours)

Orange Pi Zero Unable to test na

Chromecast No problems detected 3

Chromecast Audio No problems detected 3

Raspberry Pi 3 No problems detected 2

Caliber Smart Plug “Clicks” <1

Samsung Galaxy S6 No problems detected 4

LG Optimus G No problems detected 3

Samsung Galaxy Ace No problems detected <1

Nintendo DS Unable to test na

Nintendo DSI XL Unable to test na

Table 7.3: Association response fuzzing results

7.3.1 Authentication and Association response fuzzing re-
sults discussion

As seen in tables 7.2 and 7.3, all devices except the Caliber Smart Plug did
not show any anomalies during fuzzing. The Caliber Smart Plug, however,
started making a clicking noise when we sent all information elements at
the same time in an Association response frame. The noise itself is not
exceptional, since the device clicks when the device is plugged in or out, when
it changes connection mode and when the device receives a command from
the smartphone app that instructs it to switch the connected device on or
off. However, we did not expect that the device would click when we include

36

all information elements at the same time in an Association response frame.
Especially since the device does now show this behavior single information
elements. Therefore, we wonder if this is expected behavior or if this could
be used for some kind of attack.

7.3.2 Problems with Authentication and Association response
fuzzing

We had several problems while fuzzing the Authentication and Association
response frames:

• We were unable to fuzz the Nintendo DS and DSI XL, because we
could not find a way to make those devices automatically reconnect to
our fuzzer.

• We were unable to test Orange Pi Zero, since for some unknown reason
it refuses to initiate a connection to our fuzzer.

• We had some trouble to configure the Raspberry Pi 3 to automatically
reconnect to our fuzzer. Eventually we solved this in the following way.
We first created a real access point with the same SSID as our fuzzer.
Then we connected the Raspberry Pi to the real access point. Then
we turned off the real access point and started our fuzzer. Finally we
ran the following command to automatically connect and disconnect
the Raspberry Pi 3: “while true: do wpa cli i wlan0 disconnect &&
sleep 3 && wpa cli i wlan0 reconnect && sleep 3; done”.

• While testing the LG Optimus G, the device would not automatically
disconnect from our fuzzer when it cannot obtain an IP address. To
solve this, we sent a Deauthentication frame after the Association re-
sponse frame. However, this caused the device to not see our fuzzer
anymore. Therefore we used a second Wi-Fi dongle to send Beacon
frames, which partially solved the problem. To make the device au-
tomatically reconnect to our fuzzer, we had to delay sending of the
Deauthentication frame by one second.

• For fuzzing Authentication and Association response frames, we have
to reply to the Authentication and Association request frames from
the SUT with an Acknowledgment frame within a very small time
frame (problem 5 of section 1.1). As stated in section 6.2.2, we solved
this by using libpcap in C and using a Wi-Fi dongle that handles
acknowledgments in firmware.

37

Chapter 8

Future Work

In this chapter we present questions and topics that we encountered during
our research that have not been answered yet. These questions and topics
might be interesting for future research.

More research on IoT definitions While doing research about IoT
devices we could not find any clear definition about what IoT is and what
counts as an IoT device, as described in section 2.1. It might be interesting
to research what really counts as an IoT device and what IoT is.

Fuzzing other interfaces There are many different interfaces that are
used in IoT devices, each with their own protocol. In this thesis we only
discussed the Wi-Fi interface of IoT devices. One might also want to research
how robust the interface implementation of other interfaces like Bluetooth
Low Energy and LoRaWan are.

Fuzzing other devices In this thesis we mainly focused on IoT devices.
However, there are many more devices with Wi-Fi, like smartphones. These
could also be fuzzed in future research.

More fuzzing of Wi-Fi There are many parts of the Wi-Fi specification
that we did not fuzz. We list the parts that we recommend for future research
here.

• As discussed in section 3.1, there are two kinds of Wi-Fi network types.
For this research, we only focused on infrastructure networks. In a
future work, fuzzing could also be applied in ad hoc networks.

• Within an Wi-Fi infrastructure network, there are client devices and
access points (see section 3.1). For this research, we only focused on
client devices. However, it is also interesting to fuzz access points.

38

Especially since many IoT devices also have some kind of access point
mode for setup.

• For this research, we made a selection of Wi-Fi frames and information
elements that we fuzzed (see appendix B). In a future research, it might
be interesting to fuzz some of the frames and fields that we did not
cover, like frame types that were added in later revisions of the 802.11
standard.

39

Chapter 9

Conclusions

Wi-Fi is a very complicated protocol. There are five confusing problems,
which we described in section 1.1, that need to be solved in order to properly
fuzz Wi-Fi on IoT devices. We refer back to these five problems in this
chapter.

In chapter 3, we described how Wi-Fi enabled devices connect to each
other and what frames they use. From all the different Wi-Fi modes, we de-
cided to focus on client devices in an infrastructure network. We found that
Probe response frames, which are used during scanning for access points, are
very interesting to fuzz. This is because Probe response frames can contain
many variable length Information Elements. For the same reasons, Authen-
tication and Association response frames can also be very interesting, as the
also can contain variable length information elements.

As stated in section 3.3.1, to increase the probability that a fuzzed frame
is being parsed by the SUT, we made the decision to only send the types
of frames that the SUT expects (this corresponds to problem 3; when to
send frames such that the frames are most likely parsed). In case of Probe
response frames, this means that we will only send a Probe response frames
when the SUT sends a Probe request frame. We can conclude that this
decision indeed increased our success rates, since it allowed us to crash a
Nintendo DSI XL when it scans for Wi-Fi networks.

In chapter 4, we observed that very little research has been conducted
on Wi-Fi fuzzing. This research [16][23][22] from many years ago described
a number of problems that occur when fuzzing Wi-Fi. These problems
are knowing that sent frames are received (problem 1), the small time frame
when sending back Acknowledgment frames (problem 4), and the small time
frame for responding to a Probe request frame (problem 5). In this earlier re-
search multiple solutions were given to these problems, like flooding the SUT
with frames, using a real access point to change Wi-Fi connection states, or
to emulate the entire environment. However, none of these solutions seemed
optimal for our situation. In chapter 6, we showed that when using Scapy

40

in Python, we had the same problems as the related work. However, when
we used libpcap in C, we were able to solve problem 1 and 4, even though
programming became a lot more difficult and time consuming in C than in
Python. With libpcap, we could respond about ten times faster than with
Scapy, solving problem 4. Also, our Wi-Fi dongle’s firmware automatically
sends Acknowledgment frames, solving problem 5 and allowing us to fuzz
frames used in the authentication and association phase. Finally, were able
to receive Acknowledgment frames to our own sent frames, which allows us
to monitor if frames are received by the SUT (solving problem 1), and if
the SUT has crashed. With all of these parts, we created a fuzzer that au-
tomatically communicates with the SUT, monitors it and generates fuzzed
frames to send.

While creating and testing our fuzzer, it also appeared that some frames
were not parsed by one of our test devices, even though these frames were
acknowledged (this corresponds to problem 2; how to know that a received
frame is parsed). We confirmed that this is the case for some devices with
an experiment described in section A.3.4. To make sure that each generated
frame by our fuzzer is at least parsed once by the SUT, we decided to modify
our fuzzer so it requires each frame to be acknowledged multiple times before
moving on to the next frame.

The finished fuzzer contains three separate C programs with each of
those three programs fuzzing a single type of frame. Each of these three
programs consist of about 15 to 25 .C files, excluding headers. Coding the
fuzzers took a big part of the time we had for writing this thesis. It is built
in such a way that changing test devices (MAC address) can be done by
changing a single line, and new ‘sub-fuzzers’ (module that fuzzes a single
information element) can be added relatively easily. However, a big part of
the code could be optimized by reducing the amount of required duplicate
code. This is important if the fuzzer will be extended to fuzz more parts of
the Wi-Fi specification.

In chapter 7, the results showed that the Nintendo DSI XL and Caliber
Smart Plug showed unexpected behavior when fuzzed with our fuzzer. The
DSI XL crashed when it received a Probe response with an overflow in the
ERP, extended supported rates, RSN and vendor specific WPS information
element. While an possible attack using these Probe response frames ap-
pear to be completely useless because of its tiny attack window, it does show
how important it is to have a robust input parser. The Caliber Smart Plug
started making clicking noises when we included all possible information el-
ements in an Association response frame. We do not know why this happens
and if it is expected behavior of the device, or if this might be used for some
kind of exploit. From the ten tested devices, the DSI XL and the Caliber
Smart Plug were the only devices that showed unexpected behavior. The
time needed to fuzz a single device ranged from about an hour, to more than
ten hours.

41

We can conclude from these results, at least for the devices and parts of
the Wi-Fi specification that we tested, that IoT devices appear to have a
robust and therefore secure Wi-Fi interface implementation. However, there
are still many parts of the Wi-Fi specification and more Wi-Fi devices that
need to be fuzzed, since we only looked at three different frames used by
client devices within an infrastructure network. In chapter 8 we note other
parts of the Wi-Fi specification that are interesting to fuzz.

42

Bibliography

[1] Bestorm. https://www.beyondsecurity.com/dynamic_fuzzing_

testing_wifi_protocol.html.

[2] CVE-2006-6059. National Vulnerability Database.

[3] CVE-2006-6125. National Vulnerability Database.

[4] CVE-2006-6332. National Vulnerability Database.

[5] CVE-2007-0933. National Vulnerability Database.

[6] Internet of Things: A survey on the security of IoT frame-
works. http://iranarze.ir/wp-content/uploads/2018/02/

E5779-IranArze.pdf.

[7] Lorcon website. http://802.11ninja.net/lorcon.

[8] Peach fuzzer wi-fi pit. https://www.peach.tech/wp-content/

uploads/WIFI.pdf.

[9] Sulley github page. https://github.com/OpenRCE/sulley.

[10] What is an IoT device? https://www.hcltech.com/technology-qa/

what-is-an-iot-device.

[11] Wireshark. https://www.wireshark.org/.

[12] Overview of the Internet of Things. http://handle.itu.

int/11.1002/1000/11559, June 2012. ITU-T Recommendation
Y.4000/Y.2060.

[13] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications, 1999.

[14] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications, 2012.

[15] Laurent Butti. Wifuzzit github page. https://github.com/0xd012/

wifuzzit.

43

https://www.beyondsecurity.com/dynamic_fuzzing_testing_wifi_protocol.html
https://www.beyondsecurity.com/dynamic_fuzzing_testing_wifi_protocol.html
http://iranarze.ir/wp-content/uploads/2018/02/E5779-IranArze.pdf
http://iranarze.ir/wp-content/uploads/2018/02/E5779-IranArze.pdf
http://802.11ninja.net/lorcon
https://www.peach.tech/wp-content/uploads/WIFI.pdf
https://www.peach.tech/wp-content/uploads/WIFI.pdf
https://github.com/OpenRCE/sulley
https://www.hcltech.com/technology-qa/what-is-an-iot-device
https://www.hcltech.com/technology-qa/what-is-an-iot-device
https://www.wireshark.org/
http://handle.itu.int/11.1002/1000/11559
http://handle.itu.int/11.1002/1000/11559
https://github.com/0xd012/wifuzzit
https://github.com/0xd012/wifuzzit

[16] Laurent Butti and Julien Tinnes. Discovering and exploiting 802.11
wireless driver vulnerabilities. Journal in Computer Virology, 4(1):25–
37, 2008.

[17] Debookee. Promiscuous vs Monitoring mode. https://medium.com/

@debookee/promiscuous-vs-monitoring-mode-d603601f5fa.

[18] Gartner. Gartner Says 8.4 Billion Connected ”Things”
Will Be in Use in 2017, Up 31 Percent From 2016.
https://www.gartner.com/en/newsroom/press-releases/

2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016,
2 2017.

[19] M. Gast. 802.11 Wireless Networks: The Definitive Guide. Definitive
Guide Series. O’Reilly Media, 2005.

[20] iFixit. Chromecast 2015 teardown. https://www.ifixit.com/

Teardown/Chromecast+2015+Teardown/50189.

[21] iFixit. Chromecast teardown. https://www.ifixit.com/Teardown/

Chromecast+Teardown/16069.

[22] Sylvester Keil and Clemens Kolbitsch. Stateful fuzzing of wireless device
drivers in an emulated environment. Black Hat Japan, 2007.

[23] Manuel Mendonça and Nuno Neves. Fuzzing wi-fi drivers to locate secu-
rity vulnerabilities. In 2008 Seventh European Dependable Computing
Conference, pages 110–119. IEEE, 2008.

[24] Bradley Mitchell. 802.11 standards explained: 802.11ac,
802.11b/g/n, 802.11a. https://www.lifewire.com/

wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553,
7 2019.

[25] Nayarasi. CWAP – 802.11 Control Frame Types. https://mrncciew.
com/2014/10/02/cwap-802-11-control-frame-types/, 10 2014. Ac-
cessed: 2019-09-19.

[26] Electronics Notes. Wi-Fi Channels, Frequencies, Bands & Bandwidths.
https://www.electronics-notes.com/articles/connectivity/

wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php.
Accessed: 2019-09-18.

[27] Keyur K Patel, Sunil M Patel, et al. Internet of things-IOT: definition,
characteristics, architecture, enabling technologies, application & future
challenges. International journal of engineering science and computing,
6(5), 2016.

44

https://medium.com/@debookee/promiscuous-vs-monitoring-mode-d603601f5fa
https://medium.com/@debookee/promiscuous-vs-monitoring-mode-d603601f5fa
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.gartner.com/en/newsroom/press-releases/2017-02-07-gartner-says-8-billion-connected-things-will-be-in-use-in-2017-up-31-percent-from-2016
https://www.ifixit.com/Teardown/Chromecast+2015+Teardown/50189
https://www.ifixit.com/Teardown/Chromecast+2015+Teardown/50189
https://www.ifixit.com/Teardown/Chromecast+Teardown/16069
https://www.ifixit.com/Teardown/Chromecast+Teardown/16069
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553
https://www.lifewire.com/wireless-standards-802-11a-802-11b-g-n-and-802-11ac-816553
https://mrncciew.com/2014/10/02/cwap-802-11-control-frame-types/
https://mrncciew.com/2014/10/02/cwap-802-11-control-frame-types/
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php
https://www.electronics-notes.com/articles/connectivity/wifi-ieee-802-11/channels-frequencies-bands-bandwidth.php

[28] Postscapes. IoT Standards & Protocols Guide: 2019 Comparisons
on Network, Wireless Comms, Security, Industrial. https://www.

postscapes.com/internet-of-things-protocols. Accessed: 2019-
09-01.

[29] Partha Pratim Ray. A survey on Internet of Things architectures.
Journal of King Saud University-Computer and Information Sciences,
30(3):291–319, 2018.

[30] Margaret Rouse. Definition IoT devices (internet of things devices).
https://internetofthingsagenda.techtarget.com/definition/

IoT-device, 3 2018. Accessed: 2019-09-03.

[31] Margaret Rouse. Definition Internet of Things (IoT).
https://internetofthingsagenda.techtarget.com/definition/

Internet-of-Things-IoT, 7 2019. Accessed: 2019-09-03.

[32] Brandon Skerritt. Forcing a device to disconnect from WIFI
using a deauthentication attack. https://hackernoon.com/

forcing-a-device-to-disconnect-from-wifi-using-a-deauthentication-attack-f664b9940142.

[33] Dong Wang and Ming Zhou. A framework to test reliability and security
of Wi-Fi device. In 2014 15th International Conference on Electronic
Packaging Technology, pages 953–958. IEEE, 2014.

[34] Wireshark.org. Wi-Fi (WLAN, IEEE 802.11). https://wiki.

wireshark.org/Wi-Fi.

45

https://www.postscapes.com/internet-of-things-protocols
https://www.postscapes.com/internet-of-things-protocols
https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://internetofthingsagenda.techtarget.com/definition/IoT-device
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://hackernoon.com/forcing-a-device-to-disconnect-from-wifi-using-a-deauthentication-attack-f664b9940142
https://hackernoon.com/forcing-a-device-to-disconnect-from-wifi-using-a-deauthentication-attack-f664b9940142
https://wiki.wireshark.org/Wi-Fi
https://wiki.wireshark.org/Wi-Fi

Appendix A

Experiments

In this appendix we give more details about the experiments discussed in
chapter 6 and chapter 7. For our experiments, we are using a desktop PC
running Ubuntu 18.04 and an Atheros USB Wi-Fi dongle with an Atheros
AR9271L chipset (See Figure A.1).

We describe the following experiments:

Experiment 1. Here we test our setup with our Wi-Fi dongle to see if we
are able to send our own made frames. For this we used
Scapy in Python to send Beacon frames (used in passive
scanning). Using a smartphone that uses passive scanning,
we were able to verify that our created frames were sent
correctly.

Experiment 2. Here we test if we can reply to Probe request frames (used
in active scanning) with Probe response frames using Scapy
in Python. We measured that the time it took to respond
was around 0.03 seconds, which was not fast enough for

(a) Atheros dongle with antenna (b) AR9271L chipset

Figure A.1: Atheros AR9271 USB Wi-Fi dongle

46

all devices to accept the Probe response frame. This cor-
responds to problem 4 of section 1.1.

Experiment 3. Here we test if we can reply faster to Probe request frames
(used in active scanning) with Probe response frames using
libpcap in C instead of Scapy in Python. We measured
that our code using libpcap could reply in around 0.003
seconds, which is ten times faster than with Scapy, solving
problem 4 of section 1.1 We also found out that we could
successfully listen to Acknowledgment frames to our sent
frames with libpcap, solving problem 1 of section 1.1.

Experiment 4. Here we test if we can simulate the authentication and as-
sociation phase of open networks using libpcap in C. The
results show that the firmware of our Wi-Fi dongle han-
dles ACKing frames to our MAC address, solving problem
5 of section 1.1, which allowed us to simulate the authen-
tication and association phase correctly.

Experiment 5. Here we test if on some client devices some Probe response
frames do not show up at the application that lists the
scanning results, even though these frames are acknowl-
edged by the client device, which would mean that not all
acknowledged Probe response frames are always parsed.
This corresponds to problem 2 of section 1.1.

A.1 Monitor mode and Wireshark

To setup our Wi-Fi dongle in monitor mode (see section 3.1), we use the
aircrack-ng suite. For monitoring sent and received 802.11 frames, we use
Wireshark. Wireshark can use the Wi-Fi dongle in monitor mode to listen
to frames over the air. We can install these packages using the following
command:

sudo apt i n s t a l l a i r c rack−ng , wireshark

To enable monitor mode on the Atheros AR9271, we used the following
commands:

sudo airmon−ng s t a r t wlx000aeb2d7255
sudo ip l i n k s e t wlan0mon up

In our case wlx000aeb2d7255 was the interface name of our Wi-Fi don-
gle. This could be a different name depending on the machine and dongle.
wlan0mon was the name that airmon-ng gave to the dongle in monitor mode.
This name could also change.

47

A.2 Scapy

Here we discuss our experiments using Scapy.

A.2.1 Setup Scapy

To setup Scapy, we first need to install the following packages:

sudo apt i n s t a l l python3 , python3−pip , a i r c rack−ng
pip3 i n s t a l l scapy

This should install the latest version of Scapy. Only versions 2.4.0 and above
work with python3.

A.2.2 Experiment 1: Test setup by sending Beacon frames

To make sure the setup works, we modified an example from 4armed.com1

to send Beacon frames. We created a python file called ap.py with the
following content:

from scapy.all import Dot11 ,Dot11Beacon ,Dot11Elt ,RadioTap ,sendp

netSSID = ’testSSID ’ #Network name here

iface = ’wlan0mon ’ #Interface name here

dot11 = Dot11(type=0, subtype=8, addr1=’ff:ff:ff:ff:ff:ff’,

addr2=’22:22:22:22:22:22’, addr3=’33:33:33:33:33:33’)

beacon = Dot11Beacon ()

ssid = Dot11Elt(ID=’SSID’,info=netSSID , len=len(netSSID))

frame = RadioTap ()/dot11/beacon/ssid

sendp(frame , iface=iface , inter=0.100 , loop=1)

When we ran this code on our PC with the Wi-Fi dongle using Python
(with root permissions), this code basically creates a 802.11 beacon frame
with an information element containing testSSID as SSID and sends it every
100ms over the wlan0mon interface (our Wi-Fi dongle in monitor mode).
This means that our dongle now acts as an access point. While running
the script, we enabled Wi-Fi on a Samsung Galaxy S6 (which uses passive
scanning in addition to active scanning, see section 3.6) in client mode and
saw a new access point called testSSID. This shows that the setup works.

A.2.3 Experiment 2: Respond to Probe request frames with-
out flooding Probe response frames

As described in chapter 3, the scanning device should return an ACK frame
after receiving the Probe response frame within a certain time frame. If we

1The original example can be found on https://www.4armed.com/blog/

forging-wifi-beacon-frames-using-scapy/

48

https://www.4armed.com/blog/forging-wifi-beacon-frames-using-scapy/
https://www.4armed.com/blog/forging-wifi-beacon-frames-using-scapy/

can successfully listen for these ACK frames, we have a good way to make
sure a frame is received by the system under test while fuzzing. Therefore
it might be useful to be able to respond to Probe request frames without
flooding Probe responses, since we then can listen for ACK frames.

Using Scapy, we can listen for packets using sniff(). We can pass a
function which will be called each time a packet is received. In this function
we check if the type was a Probe request, then we read the source address,
followed by creating a Probe response frame and sending the frame over the
interface. The code we created is shown here:

from scapy.all import Dot11 ,Dot11Beacon ,Dot11Elt ,Dot11ProbeResp

,RadioTap ,sendp ,RandMAC ,sniff

netSSID = "testSSID2"

iface = ’wlan0mon ’

myMAC = "00:0a:eb:2d:72:55"

def send_probe_response(source):

radioTap = RadioTap ()

dot11 = Dot11(type=0, subtype=5, addr1=source , addr2=

myMAC , addr3=myMAC)

probeResp = Dot11ProbeResp(cap=0x0114 , beacon_interval=

0x64 , timestamp=12345)

ssid = Dot11Elt(ID=0, len=len(netSSID), info=netSSID

)

capability = Dot11Elt(ID=1, info=’\x96\x18\x24\x30\x48\x60

\x6c’)

ds = Dot11Elt(ID=3, len=1, info=’\x01’)

frame = radioTap/dot11/probeResp/ssid/capability/ds

sendp(frame , iface=iface ,verbose=False)

def recv_packet(packet):

if packet.type == 0 and packet.subtype == 4: # Probe

request

send_probe_response(packet.addr2)

#listen for packets

sniff(iface=iface , prn=recv_packet , store=0)

We ran this code on our PC with the Wi-Fi dongle in monitor mode.
This way our PC would act as an access point, responding to Probe requests
from client devices. We tested this with four smartphones as client devices,
a Samsung Galaxy S6, a LG Optimus G, a Samsung Galaxy Ace and a
Samsung GT-S3350. All phones except the Galaxy Ace showed the access
point called testSSID2 in the Wi-Fi list. Using Wireshark with a second
Wi-Fi dongle in monitor mode, we found out that on average it took our
PC 0.03 seconds to respond to a Probe request. The smartphone that did
not show the SSID of our Probe response did show the SSID after flooding

49

the device with Probe responses. This shows that the problem is the delay
before the packet arrives, which is longer than the time that the device waits
for a Probe response, which describes problem 4 of section 1.1.

A.3 Libpcap

Here we discuss our experiments using libpcap.

A.3.1 Setup libpcap

To setup libpcap, we first need to install the following packages:

sudo apt−get i n s t a l l l ibpcap−dev

This should install the libpcap library.
To compile a C program using libpcap, we used the following command:

gcc −o programName code . c −lpcap

Here it is important to include the -lpcap flag.

A.3.2 Experiment 3: Send and verify Probe response

This experiment shows that with libpcap, we were able to receive a Probe
request from the system under test (SUT), respond with a Probe response
within a very small timeframe using our Wi-Fi dongle, and verify the recep-
tion of the Probe response frame by listening to ACK frames from the SUT.
This solves both problem 4 and 1 of section 1.1.

For this experiment we used the same four smartphones as in Experiment
2. We ran our code2 on our PC with the Wi-Fi dongle in monitor mode.
This made our PC listen to Probe request frames. When it receive such
frame, it creates a Probe response frame and sends it back to the MAC
address from the Probe request frame. After the frame is sent, it listens for
the next frame and checks the type of this frame. If this frame is an ACK
frame to our MAC address, then this means that the frame sent from our
Wi-Fi dongle was successfully received by the SUT. If it is not an ACK frame
to our MAC address, then the frame might not be received successfully, or
there was a frame sent in between the Probe response and the ACK frame.

On all smartphones we were able to see our access point we created
with our code. Using Wireshark and a second Wi-Fi dongle in monitor
mode, we found out that with libpcap it only takes 0.003 seconds on average
to respond to a Probe request frame. This is ten times faster than when
using Scapy (See Experiment 2) and is therefore fast enough to reliably use.
Furthermore, we were also able to receive most of the ACK frames sent by

2For the full code of Experiment 3, see experiment3.c on https://b4rt.nl/git/bart/

cfuzz

50

https://b4rt.nl/git/bart/cfuzz
https://b4rt.nl/git/bart/cfuzz

the test devices, allowing us to verify whether the Probe response frame was
successfully received by the SUT. Since the delay between a frame and an
ACK response is really small, it is important to not recompile and apply the
libpcap filter before receiving each frame, since this causes libpcap to miss
the ACK frame most of the time.

As a side note, we found during this experiment that the LG Optimus G
prints a new line in the access point list when an SSID contains the ASCII
character 0x0A. When an SSID consists of 32 of those characters the access
point entry will be as long as the entire screen. By creating multiple access
points with the same SSID of 32 0x0A characters, one could make it difficult
to see any other access point on the list.

A.3.3 Experiment 4: Successful authentication and associa-
tion

This experiment shows that with libpcap, we were able to simulate the
authentication and association phase of connecting a an open network while
correctly ACKing frames, solving problem 5 of section 1.1, which means that
we can use this to fuzz the authentication and association phase.

For this experiment we only used a LG Optimus G smartphone as system
under test (SUT). When ran on our PC with the Wi-Fi dongle in monitor
mode, our code3 uses the same way of responding to Probe request frames
as in Experiment 3. In addition it also listens to Authentication frames
and Association request frames. For the Authentication frames it responds
with an Authentication frame with sequence number 2. For the Association
request frames it responds with an Association response frame. We modified
the filter for incoming packages to only allow from the MAC address of the
SUT (except for ACK frames, since these have no source address). We did
not code any functionality to send back the required ACK frame for each
incoming frame.

When we ran our code, our created access point showed up on the smart-
phone. When we tried to connect to the access point, the smartphone gave
a message that it could not obtain an IP address. Using Wireshark with a
second Wi-Fi dongle in monitor mode, we found out that the smartphone
successfully authenticated and associated with our fake access point, and
that it could not obtain an IP address because our access point does not
handle DHCP requests. More interesting is that the Authentication and
Association request frames of the smartphone were ACKed, while we did
not code any ACK frames. This is probably because the firmware of our
AR9271 Wi-Fi dongle handles the ACKing of frames. We verified this by
sending an ACK frame manually using libpcap and it did indeed not show
up in Wireshark, which probably means that these frames are handled by

3For the full code of Experiment 4, see experiment4.c on https://b4rt.nl/git/bart/

cfuzz

51

https://b4rt.nl/git/bart/cfuzz
https://b4rt.nl/git/bart/cfuzz

the firmware. Furthermore, our dongle only ACKs frames when the destina-
tion MAC address of the incoming message corresponds with the hardware
MAC address of our Wi-Fi dongle. Luckily, while we cannot not send any
ACK frame, we are able to receive ACK frames using libpcap, which enables
us to verify frames.

A.3.4 Experiment 5: Parsing of Probe response frames

This experiment shows that on some client devices some received Probe
response frames do not show up at the application that lists the scanning
results, even though these Probe response frames are acknowledged by the
client device. This means that not all acknowledged Probe response frames
are always parsed by the client device. This corresponds to problem 2 of
section 1.1.

Since we want to test if all acknowledged frames are parsed, we decided
we can test this by responding to the Probe requests frames of the client
device with a valid Probe response frame with the number 0 as SSID. For
each acknowledged Probe response frame, we increase this number 0 by
one. This way, when the client device parsed all the acknowledged frame,
it should display a list of SSIDs with increasing numbers without missing
any number in between the highest and lowest number. If the client device
does not parse all acknowledged frames, it should have missing numbers in
the list of SSIDs. To create the code to test this, we created a copy of our
fuzzer and modified it to do exactly as described above4.

For this experiment, we used an LG Optimus G smartphone and an
Orange Pi Zero as test devices. We first ran our code to test the LG Optimus
G smartphone. On the smartphone, we opened the settings application and
turned on Wi-Fi. After a few seconds of scanning, we saw that we got a
list of SSIDs of numbers without any gaps in between, as seen in figure A.2.
This means that all acknowledged Probe response frames were parsed.

We then ran our code to test the Orange Pi Zero. Since the device
runs on a headless Linux OS, we do not have a settings menu that lists all
scanned Wi-Fi access points. However, we were able to use a program called
wavemon (installed with the command: sudo apt install wavemon) which
scans for access points and prints the results on the terminal. After a few
seconds of scanning, we saw that there were a few numbers missing from
the list, as seen in figure A.3. From the 28 acknowledged frames, 7 numbers
were missing: 4, 6, 10, 12, 14, 20 and 25. The frames that contained these
SSIDs were acknowledged by the Orange Pi Zero.

We can conclude from this that not always all frames are parsed, even
though they are acknowledged by the system under test. However, this does
not mean that these frames are not parsed at all. Maybe they are parsed

4For the full code of Experiment 5, see the folder experiment5 on https://b4rt.nl/

git/bart/cfuzz

52

https://b4rt.nl/git/bart/cfuzz
https://b4rt.nl/git/bart/cfuzz

Figure A.2: Wi-Fi connection states

Figure A.3: Wi-Fi connection states

53

by the firmware and driver, but just not by the application. However, we
cannot easily verify this. To minimize the probability of having unparsed
frames, we can send the same frame multiple times before moving on to the
next one.

54

Appendix B

Fuzzed Fields

In this appendix we describe the specific fields that we fuzzed. We selected
most of these fields after reading the 802.11 specification, chapter 4 of the
book 802.11 framing [19, Chapter 4], which describes the function of most
fields in a more readable manner, and by sniffing access points around us to
see what information elements they include in their frames.

B.1 Information elements

There are many information elements (see section 3.6.1) that can be added
in the frame body of management frames. These information elements are
usually expected to meet some kind of rules, like an SSID length should not
be longer than 32 characters. This makes it very interesting to see what the
parser of the management frames would do when an SSID is longer than 32
characters. Therefore, we will fuzz these kind of information elements.

B.1.1 Information element selection strategy

In the original 802.11 specification, there were only eight information ele-
ments available. Since these are very basic information elements, we expect
most of them to be parsed by a client device. Therefore, we decided to fuzz
all of these eight elements in our Probe response frames, except the Chal-
lenge text element, since these are used in Authentication frames (we will
fuzz this element in our Authentication frame fuzzer).

In the many extensions of the 802.11 specification, many new information
elements were added. In the 2012 version, a list of more than one hundred
information elements are specified. We also wanted to fuzz these information
elements. Since we did not have the time to implement fuzzers for all these
elements, we chose only the ones that seemed the most likely to be parsed
by a client device, because we do not expect that a client device parses so
many information elements for each frame it receives. To make a selection of

55

elements, we sniffed for Probe response frames that were sent by our access
point at home to see what information elements it contains. Since these
elements are used in practice, we think these have the most chance of being
parsed.

B.1.2 List of fuzzed Information elements in Probe response
frames

Here we give a list of the twenty information elements that we fuzzed in
Probe response frames and what we exactly tried for each information el-
ement. While not explicitly stated in the list, we added a case for each
information element where we set the data field to 255 times 0xFF bytes.
For this section we will abbreviate information element to IE. Researching
and implementing all these twenty information elements did cost about two
weeks of time.

• SSID IE. It contains the SSID or network name of the network. The
length is specified to be not longer than 32.

– Set SSIDs longer than 32 characters

– Set non standard ASCII values as characters

• Supported rates IE. It should only contain a maximum of 8 data rates.

– Set more than 8 data rates.

– Set non-existing data rates.

– Use duplicated data rates

– Do not set any rate, or just do not include the information element
at all

• FH parameter set IE. It should have a length of 5.

– Set other lengths than 5.

• DS parameter set IE. It should have a length of 1

– Set other lengths than 1.

– Set very high channel numbers

• TIM IE. It should only be present in Beacon frames.

– Try DTIM Period of 0 and 255

– Set lengths of 3 and lowere

– Use this IE in Probe response frames

56

• CF parameter set IE. It should have a length of 6 and is only used in
beacon frames from access points that support PCF

– Set other lengths than 6.

– Use this IE in Probe response frames

– Set all data bits to 1 or 0

• IBSS parameter set IE. It should have a length of 2

– Set other lengths than 2 with data that is all zeros or all ones.

– Set all data bits to 1 or 0

• Country IE. Must be an even number of bytes.

– Try lengths lower than 6.

– Set Country String to non-ASCII values

– Set first channel number to 255 or 0

– Set number of channels to 255 or 0 (in combination with first
channel number)

– Set maximum transmit power to 0 or 255.

– Try duplicate triplets.

– Try odd lengths without padding.

• Hopping Pattern Parameters IE. It should have a length of 4

– Set other lengths than 4.

– Set all data bits to 1 or 0

• Hopping Pattern Table IE. It should have a minimum length of 6

– Set lengths lower than 6.

– Set all data bits to 1 or 0

• Request IE. Is only used in Probe request frames to request certain
information elements from the access point.

– Use in Probe response frame.

– Set all data bits to 1 or 0.

The following information elements were found by listening to frames
sent by access points in range of our Wi-Fi dongle. Because these elements
are used by real access points, there is a high probability that these are
parsed by scanning devices.

• ERP IE. Has a length of 1

57

– Set all data bits to 1 or 0.

– Try other lengths than 1.

• Extended supported rates

– Set very large number of rates.

– Set non-existing data rates.

– Use duplicated data rates

– Do not set any rate.

• HT capabilities IE. Has a length of 26

– Set all data bits to 1 or 0.

– Try other lengths than 26.

• HT operation IE. Has a length of 22

– Set all data bits to 1 or 0.

– Try other lengths than 22.

• AP channel report IE. Has a minimum length of 1

– Set all data bits to 1 or 0 at large sizes.

– Set length to 0.

• Extended capabilities IE

– Set all data bits to 1 or 0 at large sizes.

• BSS load IE. Has a length of 5

– Set all data bits to 1 or 0.

– Try other lengths than 5.

• RSN IE. Has a minimum length of 18

– Set all data bits to 1 or 0, except the version field, which should
be 1.

– Fuzz version field

– Fuzz Pairwise Cipher suite count field

– Fuzz AKM Suite count field

– Fuzz PMKIDcount field

– Try smaller lengths than 18.

– Fuzz all List fields with correct lengths

– Try very large lengths in List fields.

58

• Vendor specific IE.

– Fuzz Microsoft WPA type with sub elements.

– Fuzz Microsoft WPS type

– Fuzz Microsoft WMM type

B.1.3 List of fuzzed Information elements in Authentication
frames

For the Authentication frames, we only fuzzed the Challenge text IE, since
this is the only IE that is used in open or WEP networks. For this element,
we tried to set invalid lengths. Since the challenge text itself is allowed to
be anything, we did not find it interesting enough to fuzz the challenge text.

B.1.4 List of fuzzed Information elements in Association re-
sponse frames

We fuzzed the following information elements for Association response frames,
since these are used in this type of frame.

• Supported rates IE. It should only contain a maximum of 8 data rates.

– Set more than 8 data rates.

– Set non-existing data rates.

– Use duplicated data rates

– Do not set any rate, or just do not include the information element
at all

• Extended supported rates

– Set very large number of rates.

– Set non-existing data rates.

– Use duplicated data rates

– Do not set any rate.

• HT capabilities IE. Has a length of 26

– Set all data bits to 1 or 0.

– Try other lengths than 26.

• HT operation IE. Has a length of 22

– Set all data bits to 1 or 0.

– Try other lengths than 22.

59

• Extended capabilities IE

– Set all data bits to 1 or 0 at large sizes.

• EDCA parameter set IE. Has a length of 18

– Try other lengths than 18

– Set all data bits to 1 or 0

B.2 Generic fuzzing

In this section, we will list the generic fuzzing we did on certain frames.

B.2.1 Generic Probe response fuzzing

Aside from specific information elements, we also did some generic fuzzing
on Probe response frames. We tried the following things:

• Large lengths for all 256 possible information elements IDs

• All 256 combinations of flags in the frame control header

• Send frames with a body around 2312 bytes long (it appears that
dongle or libpcap will not send frames for body lengths larger than
or equal to 1450 bytes, since this appears to be the maximum length
of a MAC frame. Therefore, we cannot test sizes longer than 1450
bytes. As alternative, we tested frames of just below and equal to the
maximum size our setup could send)

• Duplicates of the following IEs by varying large amounts:

– SSID

– RSN

– Vendor specific

– HT capabilities

• Send all 256 IEs at the same time

• Do not send any IEs at all

B.2.2 Generic Authentication fuzzing

Aside from the specific information elements, we tried the following things
in Authentication frames:

• Use invalid sizes, smaller than 6, since the static elements make up for
6 bytes

60

• Invalid algorithm number and sequence numbers

• Try all 256 IEs with overflow and underflow

• Send all 256 IEs at same time

• Send duplicate IEs

• Try large frame body sizes

B.2.3 Generic Association response fuzzing

Aside from the specific information elements, we tried the following things
in Association response frames:

• Set the Association ID to 0xFFFF

• The Association ID field has two bits always set to 1, so we set it to
zero

• Fuzz the static Capability info field

• Try all 256 IEs with overflow and underflow

• Send all 256 IEs at same time

• Do not use IEs at all

• Send duplicate IEs

• Try large frame body sizes

61

	Introduction
	Recurring problems

	Background
	Definition of IoT
	Fuzz testing
	Choosing an interface
	Wi-Fi or 802.11?

	The IEEE 802.11 protocol
	Networks and Operation modes
	Frame types and format
	connection states
	Fuzzing in which connection state?

	Interesting frames to fuzz
	Acknowledgment frames
	Scanning
	Beacon and Probe response frames

	Authentication and Association

	Related Work
	Selecting devices to fuzz
	Requirements
	Potential devices to fuzz
	Google Chromecast
	Google Chromecast Audio
	Raspberry Pi 3
	Orange Pi Zero
	Unfit devices
	New devices
	Final selection of IoT test devices
	More test devices

	Fuzzer
	Structure
	Wi-Fi Controller
	Scapy
	libpcap

	Fuzz Controller
	Authentication and Association Beacon frames
	Fuzzed frames

	Monitor
	Acknowledgment of receipt
	Crash monitoring

	Writing the fuzzer in C

	Results
	Nintendo DSI XL ERP element crash
	Conclusions

	Probe response fuzzing results
	Probe response fuzzing results discussion
	Problems with Probe response fuzzing

	Authentication and Association response fuzzing results
	Authentication and Association response fuzzing results discussion
	Problems with Authentication and Association response fuzzing

	Future Work
	Conclusions
	Experiments
	Monitor mode and Wireshark
	Scapy
	Setup Scapy
	Experiment 1: Test setup by sending Beacon frames
	Experiment 2: Respond to Probe request frames without flooding Probe response frames

	Libpcap
	Setup libpcap
	Experiment 3: Send and verify Probe response
	Experiment 4: Successful authentication and association
	Experiment 5: Parsing of Probe response frames

	Fuzzed Fields
	Information elements
	Information element selection strategy
	List of fuzzed Information elements in Probe response frames
	List of fuzzed Information elements in Authentication frames
	List of fuzzed Information elements in Association response frames

	Generic fuzzing
	Generic Probe response fuzzing
	Generic Authentication fuzzing
	Generic Association response fuzzing

